Контрольная Техническая механика Основные задачи сопротивления материалов

Контрольная

Техническая механика

Основные задачи сопротивления материалов

Содержание

Введение 3
1 Основные понятия сопротивления материалов 5
2 Основные задачи сопротивления материалов 9
Заключение 11
Список использованных источников 12

Введение
Сопротивление материалов – наука о прочности, жесткости и надежности элементов инженерных конструкций. Методами сопротивления материалов ведутся практические расчеты и определяются необходимые, как говорят, надежные размеры деталей машин, различных конструкций и сооружений.
Основные понятия сопротивления материалов опираются на законы и теоремы общей механики и в первую очередь на законы статики, без знания которых изучение данного предмета становится практически невозможным.
Сопротивление материалов имеет целью создать практически приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в ряде случаев прибегать к упрощающим гипотезам – предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом.
Сопромат, в отличие от фундаментальных дисциплин (математики, физики, теоретической механики и др.) требует в большей степени не умение использовать сложные расчеты, а творческий, инженерный подход к решению задачи сопротивления материалов, который заключается в умении выбирать достаточную, целесообразную точность, обеспечивающую сочетание надежности конструкции, простоты технологии изготовления и экономичности.
Инженер должен не только уметь производить вычисления (компьютер справится с этой задачей быстро, точно и без ошибок), а уметь находить наилучшее решение производственной задачи, характеризуемой экономичностью, простотой, технологичностью и надежностью, а хорошей базой является сопромат.
Целью работы является исследование основных задач сопротивления материалов.
Исходя из цели в работе поставлены следующие задачи:

  • изучение основных понятий сопротивления материалов;
  • исследование основных задач сопротивления материалов.

1 Основные понятия сопротивления материалов
Введем основные понятия, принимаемые при изучении дисциплины.
Прочность – это способность конструкции выдерживать заданную нагрузку, не разрушаясь.
Жесткость – способность конструкции к деформированию в соответствие с заданным нормативным регламентом.
Деформирование – свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил
Устойчивость – свойство конструкции сохранять при действии внешних сил заданную форму равновесия.
Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.
Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции.
Отказ – нарушение работоспособности конструкции.
Опираясь на вышесказанное, можно дать определение прочностной надежности.
Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.
На рис.1 приведена структура модели прочностной надежности. Она включает известные модели или ограничения, которые априорно накладываются на свойства материалов, геометрию, формы изделия, способы нагружения, а также модель разрушения. Инженерные модели сплошной среды рассматривают материал как сплошное и однородное тело, наделенное свойством однородности структуры. Модель материала наделяется свойствами упругости, пластичности и ползучести.

Рис.1 — Структура модели прочностной надежности элементов конструкций

Упругостью называется свойство тела восстанавливать свою форму после снятия внешних нагрузок.
Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию.
Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках.
Основными моделями формы в моделях прочностной надежности, как известно, являются: стержни, пластины, оболочки и пространственные тела (рис.2).

Рис.2 — Основные модели формы в моделях прочностной надежности: а) стержень, б) пластина, в) оболочка
Модели нагружения содержат схематизацию внешних нагрузок по величине, характеру распределения (сосредоточенная или распределенная сила или момент), а также воздействию внешних полей и сред.
Внешние силы, действующие на элемент конструкции, подразделяются на 3 группы: 1) сосредоточенные силы, 2) распределенные силы, 3) объемные или массовые силы.
Сосредоточенные силы — силы, действующие на небольших участках поверхности детали (например давление шарика шарикоподшипника на вал, давление колеса на рельсы и т.п.)
Распределенные силы приложены значительным участкам поверхности (например давление пара в паропроводе, трубопроводе, котле, давление воздуха на крыло самолета и т.д.
Объемные или массовые силы приложены каждой частице материала (например силы тяжести, силы инерции)
После обоснованного выбора моделей формы, материала, нагружения переходят к непосредственной оценке надежности с помощью моделей разрушения. Модели разрушения представляют собой уравнения, связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность. Эти уравнения (условия) называют условиями прочности. Обычно рассматриваются в зависимости от условий нагружения четыре модели разрушения:

  • статического разрушения,
  • длительно статического разрушения,
  • малоциклового статического разрушения,
  • усталостного разрушения.
    При малом числе циклов (N<102) развиваются значительные пластические деформации (статическое разрушение), при большом числе циклов (N>105) пластические деформации отсутствуют (усталостное разрушение). В промежуточной области (1025) разрушение носит смешанный характер (малоцикловое разрушение). Если на элемент конструкции действует высокая температура (для алюминиевых сплавов свыше 200 Co, для стальных и титановых сплавов свыше 400 Co, для жаропрочных сплавов свыше 600 Co), но в этом случае рассматривается так называемая длительная прочность материала.
    Таким образом, сопротивление материалов зависит не только от величин действующего усилия, но и от длительности самого воздействия.

2 Основные задачи сопротивления материалов
Основная задача сопротивления материалов — разработка методов, позволяющих подбирать надежные и наиболее экономичные размеры поперечных сечений элементов конструкций, а также наиболее целесообразную их форму.
Одной из основных задач сопротивления материалов и теории упругости является оценка прочности конструкций и их элементов. Для решения этой задачи необходимо знать напряженное состояние в каждой точке тела.
При решении основной задачи сопротивления материалов — выбора материала и поперечных размеров для элементов сооружений и машин необходимо, помимо умения вычислять напряжения, знание механических свойств реальных материалов. Это влечет за собой необходимость экспериментальных исследований в лаборатории. В связи с этим в дисциплине отведено значительное место изучению механических свойств материалов и рассмотрению физической картины явления при различных деформациях.
При решении основной задачи сопротивления материалов используются как опыт, так и теория, которые в этой науке тесно связаны между собой.
Таким образом, основной задачей сопротивления материалов является разработка методов расчета элементов различных конструкций на прочность, жесткость и устойчивость при одновременном удовлетворении требований надежности и экономичности.
Для решения основной задачи сопротивления материалов необходимо научиться по внешним силам определять внутренние силы упругости. Для этого применяют метод сечений.
Итак, первая задача сопромата – это расчет элементов конструкции на прочность. Под нарушением прочности понимается не только разрушение конструкции, но и возникновение в ней больших пластических деформаций. Говоря о достаточной прочности конструкции, полагают, что прочность будет обеспечена не только при заданном значении нагрузки, но и при некотором увеличении нагрузки, то есть конструкция должна иметь определенный запас прочности.
Второй задачей сопромата стал расчет элементов конструкции на жесткость. Жесткость – это способность конструкции (или материала) сопротивляться деформированию. Иногда деформация конструкции, отвечающей условию прочности, может воспрепятствовать нормальной ее эксплуатации. В этом случае говорят, что конструкция имеет недостаточную жесткость.
Третьей задачей сопромата является расчет устойчивости элементов конструкции. Устойчивость – это способность конструкции сохранять положение равновесия, отвечающее действующей на нее нагрузке. Положение равновесия конструкции устойчиво в том случае, если, получив малое отклонение (возмущение) от этого положения равновесия, конструкция снова к нему возвращается.
Проблема устойчивости возникает, в частности, при расчете сжатых колонн. Может случиться так, что при критической нагрузке колонна, отвечающая и условию прочности, и условию жесткости, внезапно изогнется (потеряет устойчивость). Это может привести к разрушению всей конструкции.
Таким образом, сопромат – это дисциплина, в которой даются теоретические основы расчета простейших элементов конструкции (как правило, стержней) на прочность, жесткость и устойчивость.

Заключение
Таким образом, сопромат – это фундаментальная дисциплина о надежности, прочности и жесткости конструкций и машин. Если Вы обучаетесь на инженерной специальности, то нельзя обойти стороной дисциплину сопротивление материалов, поскольку сопромат является связующим звеном между фундаментальными дисциплинами, которые изучают в техническом ВУЗе первые два года, и специальными, связанными с профессией будущего специалиста, поскольку, игнорируя фактор надежности – предмет изучения сопромата, создание новой техники невозможно.
Несмотря на появление современных производительных компьютеров, прецизионных станков, роль изучения «сопротивления материалов» только возросла, поскольку создание новой техники определяется не только скоростью вычислений, но в большей степени творческим потенциалом человека и знаниями, значительная доля которых должна принадлежать сопромату.
Сопротивление материалов дает представление о процессах, происходящих внутри материала конструкции при испытании им нагрузки, значительная часть которых в сопромате существует в виде гипотез и допущений. Однако это не мешает производить вычисления с инженерной точностью и прогнозировать, выдержит ли материал нагрузку во время эксплуатации. Понимание этих процессов определяет Ваш профессиональный уровень. Обладая знанием сопромата, вы повысите эффективность вашей работы, и если даже вы не будете знать, пригодятся ли ваши наработки, вы будете знать, для чего производите расчет и станете уверенным в том, что конструкция не развалится в течение эксплуатационного периода.

Список использованных источников

  1. Антонов, В. И. Теоретическая механика (кинематика) [Текст] : конспект лекций и содержание практических занятий для студентов, обучающихся по направлению подготовки 270800.62 «Строительство» (квалификация — бакалавр, форма обучения — очная, очно-заочная) / В. И. Антонов, Р. Н. Степанов ; Московский государственный строительный университет. — Москва : МГСУ, 2013. — 63 с.
  2. Атаров, Н. М. Сопротивление материалов в примерах и задачах [Текст] : учеб. пособие для вузов / Н. М. Атаров. — М. : ИНФРА-М, 2010. — 406 с.
  3. Варданян, Г.С. Сопротивление материалов с основами строительной механики [Текст] : учеб. пособие / Г. С. Варданян [и др.]. — М. : Изд-во АСВ, 1999. – 623 с.
  4. Сопротивление материалов с основами теории упругости и пластичности [Текст] : учеб. для вузов / Г. С. Варданян [и др.] ; под ред. Г. С. Варданяна. — М. : АСВ, 1995. — 572 с. :
Оцените статью
Поделиться с друзьями
BazaDiplomov